US009270602B1

a2 United States Patent 10) Patent No.: US 9,270,602 B1
Mimms et al. 45) Date of Patent: Feb. 23, 2016
(54) TRANSMIT RATE PACING OF LARGE 6,026,090 A * 2/2000 Bensonetal. 370/395.7
6,026,443 A 2/2000 Oskouy et al.
NETWORK TRAFFIC BURSTS TO REDUCE 6,070,219 A * 5/2000 McAlpineetal. 710/263
JITTER, BUFFER OVERRUN, WASTED 6.115.802 A 9/2000 Tock et al.
BANDWIDTH, AND RETRANSMISSIONS 6,347,337 B1* 2/2002 Shahetal. ...cccoeeuneen. 709/224
6,388,980 B1* 52002 Malhotra 3701229
H . 6,529,508 Bl 3/2003 Lietal.
(71) Applicant: FS Networks, Inc., Seattle, WA (US) 6574220 BL* 6/2003 Pefty - oo 370/395.4
. 6,700,871 Bl 3/2004 Harper et al.
(72) Inventors: Alan B. Mimms, Spokane, CA (US); 6.748.457 B2 6/2004 Fallon et al.
Timothy S. Michels, Greenacres, CA 6,781,990 Bl 8/2004 Puri et al.
(US); Jonathan M. Hawthorne, Seattle, 6,785,236 B1* 82004 Loetal.ccccooeurnnn. 370/235
WA (US); William R. Baumans, §934776 B2 82005 Comnoretal 7060
Seattle, WA (US) N OMIOTELAL o
(Continued)
(73) Assignee: F5 Networks, Inc., Seattle, WA (US)
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this Ep 1813084 AL 89007
patent is extended or adjusted under 35
U.S.C. 154(b) by 258 days. WO WO 2006/055494 Al 5/2006
OTHER PUBLICATIONS
(21) Appl. No.: 13/732,337
Cavium Networks, “Cavium Networks Product Selector Guide—
(22) Filed: Dec. 31, 2012 Single & Multi-Core MIPS Processors, Security Processors and
Accelerator Boards,” 2008, pp. 1-44, Mountain View, CA, US.
(51) Int.ClL (Continued)
HO4L 12/819 (2013.01)
HO4L 12/879 (2013.01) Primary Examiner — Dung B Huynh
GOGF 13/28 (2006.01) (74) Attorney, Agent, or Firm —LeClairRyan, a
(52) US.CL Professional Corporation
CPCcccceee. HO4L 47/21 (2013.01); GOGF 13/28
(2013.01); HO4L 49/901 (2013.01) 1)) ABSTRACT
(58) Il:}leld of Classification Search A system, method and medium is disclosed which includes
S one lication file f | b i selecting, at a software component of a network traffic man-
ee application file for complete search history. agement device, a first bucket having a first predetermined
. transmit time. The disclosure includes populating one or
(36) References Cited more selected data packet descriptors associated with one or
U.S. PATENT DOCUMENTS more corre.sponding data.packets in the first bucket. The
disclosure includes releasing the first bucket to a hardware
4,914,650 A * 4/1990 Sriramccooevenens 370/235 component of the network traffic management device,
2’35?’% ﬁ . é; }ggg 3\(/)}(11'(;8 cal 3701392 wherein the hardware component processes the one or more
5699361 A * 12/1997 Ding etal. o 370/431 data packet descriptors of the first bucket for the first prede-
5,761,534 A 6/1998 Lundberg et al. termined transmit time.
5,828,835 A 10/1998 Isfeld et al.
5,941,988 A 8/1999 Bhagwat et al. 18 Claims, 8 Drawing Sheets

;"' s

= ¥

Paced Data from
released buckets

Z AT S A
Send Rin

Non-Paced Data w3t Bulk Send Ring

1*502

506
DMA
Transmit
Engine
Strict Priority Ring

Arbitration

US 9,270,602 B1

Page 2
(56) References Cited 2007/0162619 Al* 7/2007 Alonietal. 709/250
2008/0126509 Al 5/2008 Subramanian et al.
U.S. PATENT DOCUMENTS 2008/0184248 Al 7/2008 Barua et al.
2008/0201772 Al* 8/2008 Mondaeev etal. ... 726/13
7,046,628 B2* 5/2006 Luhmannetal. 370/230 2008/0219279 Al 9/2008 Chew
7,065,630 Bl 6/2006 Ledebohm et al. 2009/0003204 Al 1/2009 Okholm et al.
7,107,348 B2 9/2006 Shimada et al. 2009/0016217 Al 1/2009 Kashyap
7,124,196 B2* 10/2006 HOOPErcc.cccccoevrrn.e. 709/232 2009/0089619 Al 4/2009 Huang et al.
7,142,540 B2 11/2006 Hendel et al. 2009/0154459 Al* 6/2009 Husaketal. ... 370/390
7,164,678 B2* 1/2007 CORMOL ...cvvvvccrveerrevernnn: 370/392 2009/0222598 Al 9/2009 Hayden
7,236,491 B2 6/2007 Tsao et al. 2009/0248911 Al 10/2009 Conroy et al.
7,281,030 Bl 10/2007 Davis 2009/0279559 Al* 11/2009 Wongetal. ... 370/412
7,324,525 B2 1/2008 Fuhs et al. 2010/0082849 Al 4/2010 Millet et al.
7327,674 B2* 2/2008 Eberle et al. ..o, 370/230 2010/0085875 Al* 4/2010 Solomon et al. 370/235
7,349,405 B2* 3/2008 Deforchecccoccc.. 370/395.4 2010/0094945 Al ~ 4/2010 Chan et al.
7,355,977 Bl 4/2008 1.i 2011/0228781 Al* 9/2011 Izenbergetal. ... 370/392
7,376,772 B2 5/2008 Fallon 2013/0250777 AL* 9/2013 Zieglercccoevevninnn 370/248
7,403,542 Bl 7/2008 Thompson
7,420,931 B2 9/2008 Nandapet al. OTHER PUBLICATIONS
;’3;;’}% g% }gggg érzlﬁlftra;ﬁt(eet al. “Chapter 15, Memory Mapping and DMA,” Memory Management in
7:496:695 B2 2/2009 Go et al. Linux, ch15.13676, accessed on Jan. 25, 2005, pp. 412-463.
7,500,028 B2 3/2009 Yamagishi Comtech AHA Corporation, “Comtech AHA Announces 3.0 Gbps
7.512.721 Bl 3/2009 Olson GZIP Compression/Decompression Accelerator AHA362-PCIX
7:533:197 B2 5/2009 Leonard et al. offers high-speed GZIP compression and decompression,” www.aha.
7,558,910 B2 7/2009 Alverson et al. com, Apr. 20, 2005, pp. 1-2, Moscow, ID, USA.
7,571,299 B2 8/2009 Loeb Comtech AHA Corporation, “Comtech AHA Announces GZIP Com-
7,647,416 B2 1/2010 Chiang et al. pression and Decompression IC Offers the highest speed and com-
7,649,882 B2* 1/2010 Stiliadis ... 370/390 pression ratio performance in hardware on the market,” www.aha.
7,657,659 Bl 2/2010 Lambeth et al. com, Jun. 26, 2007, pp. 1-2, Moscow, ID, USA.
7,668,727 B2 2/2010 Mitchell et al. EventHelix, “DMA and Interrupt Handling,” <http://www.
7,668,851 B2 2/2010 Triplett
7799239 B1 62010 Aronov ef al. eventl_lehx.com/RealtlmeMantra/FaultHandl1ng/(_ima71nterrupt7
7’734’809 B2 6/2010 Joshi et al. handling htm>, Jan. 29, 2010, pp. 1-4, EventHelix.com.
7:735:099 Bl 6/2010 Micalizzi, Jr. Alteon Websystems Inc., “Gigabit Ethernet/PCI Network Interface
7742.412 Bl 6/2010 Medina Card; Host/NIC Software Interface Definition,” Jul. 1999, pp. 1-80,
7,784,093 B2 8/2010 Deng et al. Revision 12.4.13, P/N 020001, San Jose, California.
7,826,487 Bl 11/2010 Mukerji et al. Harvey et al., “DMA Fundamentals on Various PC Platforms,” Appli-
7,877,524 Bl 1/2011 Annem et al. cation Note 011, Apr. 1999, pp. 1-20, National Instruments Corpo-
7,916,728 Bl 3/2011 Mimms ration.
7929433 B2* 4/2011 Husaketal. ... 370/229 Mangino, John, “Using DMA with High Performance Peripherals to
7,975,025 Bl 772011 Szabo et al. Maximize System Performance,” WW TMS470 Catalog Applica-
8,006,016 B2 8/2011 Muller et al. tions, SPNA105 Jan. 2007, pp. 1-23.
g’}?g’ig? g} égg}% ﬁizﬁ:i ZE g%' Mogul, Jeffrey C., “The Case for Persistent-Connection HTTP”
$.112.594 B2 32012 Giacomoni ef al. SIGCOMM °95, Digital Equipment Corporation Western Research
8279865 B2 10/2012 Giacomoni et al. Laboratory, 1995, pp. 1-15, Cambridge, Maine.
8,306,036 Bl 11/2012 Bollay et al. Cavium Networks, “NITROX™ XI. Security Acceleration Modules
8,346,993 B2 1/2013 Michels et al. PCI 3V or 3V/5V-Universal Boards for SSL and IPSec,” at http://
8,447,884 Bl 5/2013 Baumann www.Caviumnetworks.com, 2002, pp. 1, Mountain View, CA USA.
8,880,632 B1 11/2014 Michels et al. Cavium Networks, “PCI, PCI-X,” at (http://www.cavium.com/accel-
8,880,696 Bl 11/2014 Michels et al. eration_boards_ PCI_PCI-X.htm (Downloaded Oct. 2008),
2001/0038629 Al* 11/2001 Shinoharac..... 370/394 Cavium Networks—Products > Acceleration Boards > PCI, PCI-X).
2002/0156927 Al 10/2002 Boucher et al. “Plan 9 kernel history: overview / file list / diff list,” <http://switch.
%88%;82812%2 ﬁ} 13;388% E}ileaeg‘:)r&te;lzl com/cgi-bin/planShistory.cgi?f=2001/0126/pc/etherga620.com>,
" ' accessed Oct. 22, 2007, pp. 1-16.
%883;882%332 ﬁ} * 3‘;3883 183}11%3].:; :tl al g;g%gg Rabinovich et al., “DHTTP: An Efficient and Cache-Friendly Trans-
2004/0202161 Al 10/2004 Stachura et al. fer Protocol for the Web,” IEEE/ACM Transactions on Networking,
2004/0249881 Al 12/2004 Jha et al. Dec. 2004, pp. 1007-1020, vol. 12, No. 6.
2004/0249948 Al 12/2004 Sethi et al. Salchow, Jr., KJ, “Clustered Multiprocessing: Changing the Rules of
2004/0267897 Al 12/2004 Hill et al. the Performance Game,” F5 White Paper, Jan. 2008, pp. 1-11, F5
2005/0007991 Al 1/2005 Ton et al. Networks, Inc.
2005/0022623 Al 2/2005 Reiche et al. Stevens, W., “TCP Slow Start, Congestion Avoidance, Fast Retrans-
2005/0083952 Al 4/2005 Swain mit, and Fast Recovery Algorithms,” Network Working Group, RFC
2005/0091390 Al* 4/2005 Hc?lmer etal. ... 709/230 2001’ Jan. 1997’ pp- 1-6.
2005/0114559 Al 5/2005 Miller EventHelix, “TCP—Transmission Control Protocol (TCP Fast
2005/0141427 Al* 6/2005 Bartky ..o 370/235 Retransmit and Recovery)” Mar. 28. 2002 1-5. EventHeli
2005/0175014 Al 8/2005 Patrick ery),” Mar. 28, 2002, pp. 1-5, EventHelix.com.
2005/0213570 Al 9/2005 Stacy et al. Wadge, Wallace, “Achieving Gigabit Performance on Programmable
2005/0226234 A1* 10/2005 Sanoetal. .oovevveeiivviiinl 370/378 Ethernet Network Interface Cards,” May 29,2001, pp- 1-9.
2006/0007928 Al 1/2006 Sangillo Welch, Von, “A User’s Guide to TCP Windows,” http://www.
2006/0104303 Al 5/2006 Makineni et al. vonwelch.com/report/tcp_ windows, updated 1996, last accessed
2006/0221832 Al 10/2006 Muller et al. Jan. 29, 2010, pp. 1-5.
2006/0221835 Al 10/2006 Sweeney Wikipedia, “Direct memory access,” <http://en.wikipedia.org/wiki/
2006/0224820 Al* 10/2006 Choetal.c.covevnrn.. 711/103 Direct__memory_ access™>, accessed Jan. 29, 2010, pp. 1-6.
2006/0235996 Al 10/2006 Wolde et al.
2006/0288128 Al 12/2006 Moskalev et al. * cited by examiner

U.S. Patent Feb. 23,2016 Sheet 1 of 8 US 9,270,602 B1

EE

/‘%@

160
J

102 -7
102

/‘%‘30

FIG. 1

NETWORK
108

US 9,270,602 B1

Sheet 2 of 8

Feb. 23, 2016

U.S. Patent

L IARIIE
& 4
Fvvd w7
SAOYIIILNI O 3OVHHILN]
J0IA30 WHOMLIN
N e
w
g0z 7
TNAON w7
NOLLYONddY HOSSIO0Hd
it 301A30
| AMONBW 3030 L

ol

FVIAZC0 LINTWZDVYNYIN OlddVHEL MROMITN

U.S. Patent Feb. 23,2016 Sheet 3 of 8 US 9,270,602 B1

e N I T R S SR S SN S S I T e v I e o oo e mom Swm e mew e =
g DMA Memory Host System E A//’ﬁ 0
| Resources | Send Q\MA \ 11 E
| 214 De%thrg;‘tor 292 :
| | [DNAPackel] | 218 Host ||
i Ruffars 1 Processor(s} |
i 216 2 204 i
i 3 f
! 4 f
| i
b e e e e e men s e mmen s e e mmn e (e e mmmm s mmmm e mmmn mmmm amms mmn J
T\QZO
/
Network Interface Controller
204
HT MAC 222
DMA Engine 224
DA Ring fo
Engine Qos
226 Mapper
228
+
Maiibox
Register
238
Engress DMA Routing 222
¥
Ethernet MACs 234
L| 236

¥ Ethermnet Port

FIG. 2B

U.S. Patent Feb. 23,2016 Sheet 4 of 8 US 9,270,602 B1

110

Driver 1

{ Driver (n))

Host System 111

P-220
Network Interface Controller
204
Host System 212
DMA DMA DMA
Chamnel Channgl Channel
1 2 3
228 240 242

N pd

Packat Classification & DMA
Channel Assignment Logic 244

E
Ethernet MACs 234

i
Ll Noss

4 Ethermnet Port

FIG. 2C

U.S. Patent

Feb. 23, 2016 Sheet 5 of 8 US 9,270,602 B1

Buecket hoids many packet
f DMA descriptors

300~ -Fence marks last descriptor

in this bucket

~- 302

EEEE e ~Bucket has packets from
many sessions

FIG. 3

Session data distributed
acrass multiple buckets

Ssession Data

- 400

et

11

jesussran ooy

| WA YA
LA o

T2

Transmit Time

FIG. 4

U.S. Patent Feb. 23,2016 Sheet 6 of 8 US 9,270,602 B1

500 504
T 506
Paced Data from LTI TS5
refeased buckets ® Pacing Send Ring 1
il i DMA
Transmit
Engine
Non-Paced Data ————3=t, Bulk Send Ring » p————e—p
§%502
Sirict Prieity Ring
Arbitration
Bulk dala gals in 800
aﬁerbgckeidata
Bucket data finishes New hucket data
consumes full time starts al fime slot
boundary No dala

606

ol

&

Bucket Time Quanta
Boundaries

FIG. 6

U.S. Patent Feb. 23,2016 Sheet 7 of 8 US 9,270,602 B1
£04
f?OQ
Bt Select first bucket
i f?04
. Populate selected b(ucket with
data pack descriptor(s)
A 708
Vs Another data ™~
2 packet to add to selected >
T bucket? 7
708
Apply fence to selected bucket &
release to hardware
710
.. Lastbucket? >
f?’i?

Select next bucket

FIG. 7

U.S. Patent Feb. 23,2016 Sheet 8 of 8 US 9,270,602 B1

O
o
Ja)

J/‘SOZ
Select first bucket
$ fSDéi
5 Process paced data packets
for selected bucket

/‘"812

Select nexd bucket

" Addional
<. dliotted time left? >

/'814 ~ 808

Write no data/expire =

T Bulk
< datapacketsin @ >
. _bucket?

Yes

Process bulk data

FIG. 8

US 9,270,602 B1

1
TRANSMIT RATE PACING OF LARGE
NETWORK TRAFFIC BURSTS TO REDUCE
JITTER, BUFFER OVERRUN, WASTED
BANDWIDTH, AND RETRANSMISSIONS

FIELD

This technology relates to a system and method for pacing
network traffic between network devices.

BACKGROUND

It is very common for a modern server to transmit large
blocks of data in one burst to a single destination where the
network path to the destination has much lower bandwidth
than the really large bandwidth of the server’s path within the
data center and the first few hops along that path. Often these
bursts are in response to a request for data, and the data is read
from a storage medium (e.g., a disk) in a large block to help
amortize the cost of the read operation. The large chunk of
data is then dumped by the server’s OS into the network at full
speed, adding latency for other traffic following some portion
of the same path through the network. This latency is unnec-
essary since other traffic could easily have been interleaved
with the packets of the burst if the packets of the burst were
spaced in time to match the true bandwidth of the full path to
the destination. Further, such bursts can result in loss of some
of the burst data due to overruns in of the buffering in the
network path to the destination. Such losses necessitate
retransmission of some of the large chunk of data—effec-
tively reducing the gains that were hoped to be achieved by
the batching of the read operation into a large chunk and
reducing the overall throughput of the server. If the packets in
these bursts were, instead, spread out in time at a pace match-
ing the full network path data rate, both of these problems are
easily solved

What is needed is a system and method which overcomes
these disadvantages.

SUMMARY

In an aspect, a method for pacing data packets from one or
more sessions comprises selecting, at a software component
of'a network traffic management device, a first bucket having
a first predetermined transmit time. The method comprises
populating one or more selected data packet descriptors asso-
ciated with one or more corresponding data packets in the first
bucket. The method comprises releasing the first bucket to a
hardware component of the network traffic management
device, wherein the hardware component processes the one or
more data packet descriptors of the first bucket for the first
predetermined transmit time.

In an aspect, a processor readable medium having stored
thereon instructions for pacing data packets from one or more
sessions, comprising machine executable code which when
executed by at least one processor and/or network interface a
network traffic management device to perform a method
comprising selecting a first bucket having a first predeter-
mined transmit time; populating one or more selected data
packet descriptors associated with one or more corresponding
data packets in the first bucket; releasing the first bucket to a
hardware component of the network traffic management
device, wherein the hardware component processes the one or
more data packet descriptors of the first bucket for the first
predetermined transmit time.

In an aspect, a network traffic management device com-
prises a memory containing non-transitory machine readable

10

20

40

45

55

65

2

medium comprising machine executable code having stored
thereon instructions for pacing data packets from one or more
sessions. A network interface configured to communicate
with one or more servers over a network. A processor coupled
to the network interface and the memory, the processor con-
figured to execute the code which causes the processor to
perform, with the network interface, a method comprising:
selecting a first bucket having a first predetermined transmit
time; populating one or more selected data packet descriptors
associated with one or more corresponding data packets in the
first bucket; releasing the first bucket to a hardware compo-
nent of the network traffic management device, wherein the
hardware component processes the one or more data packet
descriptors of the first bucket for the first predetermined trans-
mit time.

In one or more of the above aspects, the method performs
comprises selecting, at the software component, a second
bucket having a second predetermined transmit time that is
the same as the first transmit time of the first bucket; popu-
lating one or more selected data packet descriptors associated
with one or more corresponding data packets in the second
bucket; releasing the second bucket to the hardware compo-
nent of the network traffic management device, wherein the
hardware component processes the one or more data packet
descriptors of the second bucket for the second predetermined
transmit time quanta.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11is a diagram of an example system environment that
includes a network traffic management device in accordance
with an aspect of the present disclosure.

FIG. 2A is a block diagram of the network traffic manage-
ment device in accordance with an aspect of the present
disclosure.

FIG. 2B illustrates a block diagram of the network inter-
face in accordance with an aspect of the present disclosure.

FIG. 2C illustrates further details of the network traffic
management device in accordance with an aspect of the
present disclosure.

FIG. 3 illustrates an example transmit ring or bucket in
accordance with an aspect of the present disclosure.

FIG. 4 illustrates a time line of an example transmit ring or
bucket in accordance with an aspect of the present disclosure.

FIG. 5 illustrates a block diagram of hardware based time
enforcement in performed by a high speed bridge (HSB)
priority mechanism in accordance with an aspect of the
present disclosure.

FIG. 6 illustrates an example transmit time line in accor-
dance with an aspect of the present disclosure.

FIG. 7 illustrates a flow chart of the software implementa-
tion of populating buckets with data packet descriptors in
accordance with an aspect of the present disclosure.

FIG. 8 illustrates a flow chart of the software implementa-
tion of populating buckets with data packet descriptors in
accordance with an aspect of the present disclosure.

While these examples are susceptible of embodiment in
many different forms, there is shown in the drawings and will
herein be described in detail preferred examples with the
understanding that the present disclosure is to be considered
as an exemplification and is not intended to limit the broad
aspect to the embodiments illustrated.

DETAILED DESCRIPTION

FIG. 11is a diagram of an example system environment that
includes a network traffic management device in accordance

US 9,270,602 B1

3

with an aspect of the present disclosure. The example system
environment 100 includes one or more Web and/or non Web
application servers 102 (referred generally as “servers”), one
or more client devices 106 and one or more network traffic
management devices 110, although the environment 100 can
include other numbers and types of devices in other arrange-
ments. The network traffic management device 110 is
coupled to the servers 102 via local area network (LAN) 104
and client devices 106 via a wide area network 108. Gener-
ally, client device requests are sent over the network 108 to the
servers 102 which are received or intercepted by the network
traffic management device 110.

Client devices 106 comprise network computing devices
capable of connecting to other network computing devices,
such as network traffic management device 110 and/or serv-
ers 102. Such connections are performed over wired and/or
wireless networks, such as network 108, to send and receive
data, such as for Web-based requests, receiving server
responses to requests and/or performing other tasks. Non-
limiting and non-exhausting examples of such client devices
106 include personal computers (e.g., desktops, laptops), tab-
lets, smart televisions, video game devices, mobile and/or
smart phones and the like. In an example, client devices 106
can run one or more Web browsers that provide an interface
for operators, such as human users, to interact with for mak-
ing requests for resources to different web server-based appli-
cations and/or Web pages via the network 108, although other
server resources may be requested by client devices.

The servers 102 comprise one or more server network
devices or machines capable of operating one or more Web-
based and/or non Web-based applications that may be
accessed by other network devices (e.g. client devices, net-
work traffic management devices) in the environment 100.
The servers 102 can provide web objects and other data
representing requested resources, such as particular Web
page(s), image(s) of physical objects, JavaScript and any
other objects, that are responsive to the client devices’
requests. It should be noted that the servers 102 may perform
other tasks and provide other types of resources. It should be
noted that while only two servers 102 are shown in the envi-
ronment 100 depicted in FIG. 1B, other numbers and types of
servers may be utilized in the environment 100. It is contem-
plated that one or more of the servers 102 may comprise a
cluster of servers managed by one or more network traffic
management devices 110. In one or more aspects, the servers
102 may be configured implement to execute any version of
Microsoft® IIS server, RADIUS server, DIAMETER server
and/or Apache® server, although other types of servers may
be used.

Network 108 comprises a publicly accessible network,
such as the Internet, which is connected to the servers 102,
client devices 106, and network traffic management devices
110. However, it is contemplated that the network 108 may
comprise other types of private and public networks that
include other devices. Communications, such as requests
from clients 106 and responses from servers 102, take place
over the network 108 according to standard network proto-
cols, such as the HTTP, UDP and/or TCP/IP protocols, as well
as other protocols. As per TCP/IP protocols, requests from the
requesting client devices 106 may be sent as one or more
streams of data packets over network 108 to the network
traffic management device 110 and/or the servers 102. Such
protocols can be utilized by the client devices 106, network
traffic management device 110 and the servers 102 to estab-
lish connections, send and receive data for existing connec-
tions, and the like.

10

15

20

25

30

35

40

45

50

55

60

65

4

Further, it should be appreciated that network 108 may
include local area networks (LANs), wide area networks
(WANSs), direct connections and any combination thereof, as
well as other types and numbers of network types. On an
interconnected set of LANs or other networks, including
those based on differing architectures and protocols. Network
devices such as client devices, 106, servers 102, network
traffic management devices 110, routers, switches, hubs,
gateways, bridges, cell towers and other intermediate net-
work devices may act within and between LANs and other
networks to enable messages and other data to be sent
between network devices. Also, communication links within
and between LLANs and other networks typically include
twisted wire pair (e.g., Ethernet), coaxial cable, analog tele-
phone lines, full or fractional dedicated digital lines including
T1, T2, T3, and T4, Integrated Services Digital Networks
(ISDNs), Digital Subscriber Lines (DSLs), wireless links
including satellite links and other communications links
known to those skilled in the relevant arts. Thus, the network
108 is configured to handle any communication method by
which data may travel between network devices.

LAN 104 comprises a private local area network that
allows communications between the one or more network
traffic management devices 110 and one or more servers 102
in the secured network. It is contemplated, however, that the
LAN 104 may comprise other types of private and public
networks with other devices. Networks, including local area
networks, besides being understood by those skilled in the
relevant arts, have already been generally described above in
connection with network 108 and thus will not be described
further.

As shown in the example environment 100 depicted in FIG.
1B, the one or more network traffic management devices 110
is interposed between client devices 106 with which it com-
municates with via network 108 and servers 102 with which
it communicates with via LAN 104. In particular to the
present disclosure, the network traffic management device
110 operates in conjunction with a clustered multi-processing
(CMP) system which includes one or more network traffic
management devices 110, each of which having one or more
cores or processors 200 (FIG. 2A). Generally, the network
traffic management device 110 manages network communi-
cations, which may include one or more client requests and
server responses, via the network 108 between the client
devices 106 and one or more of the servers 102. In any case,
the network traffic management device 110 may manage the
network communications by performing several network
traffic related functions involving the communications. Some
functions include, but are not limited to, load balancing,
access control, and validating HTTP requests using JavaS-
cript code that are sent back to requesting client devices 106.

FIG. 2A is a block diagram of the network traffic manage-
ment device in accordance with an aspect of the present
disclosure. As shown in FIG. 2 A, the example network traffic
management device 110 includes one or more device proces-
sors or cores 200, one or more device I/O interfaces 202, one
or more network interfaces 204, and one or more device
memories 206, which are coupled together by one or more bus
208. It should be noted that the network traffic management
device 110 can be configured to include other types and/or
numbers of components and is thus not limited to the con-
figuration shown in FIG. 2A.

Device processor 200 of the network traffic management
device 110 comprises one or more microprocessors config-
ured to execute computer/machine readable and executable
instructions stored in the device memory 206. Such instruc-
tions, when executed by one or more processors 200, imple-

US 9,270,602 B1

5

ment general and specific functions of the network traffic
management device 110, including the inventive process
described in more detail below. It is understood that the pro-
cessor 200 may comprise other types and/or combinations of
processors, such as digital signal processors, micro-control-
lers, application specific integrated circuits (“ASICs”), pro-
grammable logic devices (“PLDs”), field programmable
logic devices (“FPLDs”), field programmable gate arrays
(“FPGAs”), and the like. The processor 200 is programmed or
configured according to the teachings as described and illus-
trated herein.

Device 1/O interfaces 202 comprise one or more user input
and output device interface mechanisms. The interface may
include a computer keyboard, mouse, display device, and the
corresponding physical ports and underlying supporting
hardware and software to enable the network traffic manage-
ment device 110 to communicate with other network devices
in the environment 100. Such communications may include
accepting user data input and providing user output, although
other types and numbers of user input and output devices may
be used. Additionally or alternatively, as will be described in
connection with network interface 204 below, the network
traffic management device 110 may communicate with the
outside environment for certain types of operations (e.g.
smart load balancing) via one or more network management
ports.

Network interface 204 comprises one or more mechanisms
that enable the network traffic management device 110 to
engage in network communications over the LAN 104 and
the network 108 using one or more of a number of protocols,
such as TCP/IP, HTTP, UDP, RADIUS and DNS. However, it
is contemplated that the network interface 204 may be con-
structed for use with other communication protocols and
types of networks. Network interface 204 is sometimes
referred to as a transceiver, transceiving device, or network
interface card (NIC), which transmits and receives network
data packets over one or more networks, such as the LAN 104
and the network 108. In an example, where the network traffic
management device 110 includes more than one device pro-
cessor 200 (or a processor 200 has more than one core), each
processor 200 (and/or core) may use the same single network
interface 204 or a plurality of network interfaces 204. Further,
the network interface 204 may include one or more physical
ports, such as Ethernet ports, to couple the network traffic
management device 110 with other network devices, such as
servers 102. Moreover, the interface 204 may include certain
physical ports dedicated to receiving and/or transmitting cer-
tain types of network data, such as device management
related data for configuring the network traffic management
device 110 or client request/server response related data.

Bus 208 may comprise one or more internal device com-
ponent communication buses, links, bridges and supporting
components, such as bus controllers and/or arbiters. The bus
208 enables the various components of the network traffic
management device 110, such as the processor 200, device
I/O interfaces 202, network interface 204, and device
memory 206, to communicate with one another. However, it
is contemplated that the bus 208 may enable one or more
components of the network traffic management device 110 to
communicate with one or more components in other network
devices as well. Example buses include HyperTransport, PCI,
PCI Express, InfiniBand, USB, Firewire, Serial ATA (SATA),
SCSI, IDE and AGP buses. However, it is contemplated that
other types and numbers of buses may be used, whereby the
particular types and arrangement of buses will depend on the
particular configuration of the network traffic management
device 110.

20

25

30

40

45

6

Device memory 206 comprises computer readable media,
namely computer readable or processor readable storage
media, which are examples of machine-readable storage
media. Computer readable storage/machine-readable storage
media may include volatile, nonvolatile, removable, and non-
removable media implemented in any method or technology
for storage of information. Examples of computer readable
storage media include RAM, BIOS, ROM, EEPROM, flash/
firmware memory or other memory technology, CD-ROM,
digital versatile disks (DVD) or other optical storage, mag-
netic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to store the information, which can be accessed by a
computing or specially programmed network device, such as
the network traffic management device 110.

Such storage media includes computer readable/processor-
executable instructions, data structures, program modules, or
other data, which may be obtained and/or executed by one or
more processors, such as device processor 200. Such instruc-
tions, when executed, allow or cause the processor 200 to
perform actions, including performing the inventive pro-
cesses described below. The memory 206 may contain other
instructions relating to the implementation and operation of
an operating system for controlling the general operation and
other tasks performed by the network traffic management
device 110.

FIG. 2B illustrates a block diagram of the network inter-
face in accordance with an aspect of the present disclosure. In
particular, FIG. 2B shows the DMA processes used by net-
work interface 204 for using multiple independent DMA
channels with corresponding multiple applications, where
each application has its own driver, and for sending packets.

As illustrated in FIG. 2B, the host system 111 can send a
network data packet stored in host memory 212 to the net-
work 108 via network interface controller 204 and Ethernet
port 236. A send DMA operation is performed when the host
system 111 uses a DMA channel to move a block of data from
host memory 22 to a network interface controller peripheral
(not shown) via network 108. To perform a send DMA opera-
tion, the host processor 200 places the target network data
packet into DMA packet buffer 216 and creates a DMA send
descriptor (not shown separately) in send DMA descriptor
rings 218. The DMA send descriptor is jointly managed by
the host system 111 and the network interface controller 204.
The DMA send descriptor includes an address field and
length field. The address field points to the start of the target
network data packet in DMA packet buffer 216. The length
field declares how many bytes of target data are present in the
DMA packet buffer 216. The DMA send descriptor also has a
set of bit flags (not shown) used to signal additional target data
control and status information.

By way of example only, return DMA descriptor rings and
send DMA descriptor rings 218 can be physically in the same
hardware memory blocks functioning as return and send
DMA rings, respectively, at different times. Alternatively,
separate and distinct memory blocks within host memory 212
DMA memory resources 214 may be reserved for each return
DMA descriptor rings and send DMA descriptor rings 218.

Host system 111 places the send descriptor on the send
DMA descriptor rings 218 in host system memory 212. The
host processor 200 determines the QoS of the network packet
to be transferred to the network 108 and moves the network
packet to the appropriate DMA packet buffer 216 and places
the descriptor on the appropriate descriptor rings 1-4 in send
DMA descriptor rings 218. The descriptor ring in send DMA
descriptor rings 218 is chosen by the host system 111 which
selects the DMA channel, its associated peripheral, and the

US 9,270,602 B1

7

QoS level within the DMA channel. Send descriptors created
by host system 111 in send DMA descriptor rings 218 can be
of variable types, where each descriptor type can have a
different format and size. The send DMA descriptorrings 218
are capable of holding descriptors of variable type.

The host processor 200 writes one or more mailbox regis-
ters 230 of the network interface controller 204 to notify the
network interface controller 204 that the packet is ready. In
performing this notification, the host processor 200 performs
a write operation to a memory mapped network interface
controller register (mailbox register 230). The host processor
200 can report the addition of multiple descriptors onto the
send DMA ring in a single update, or alternatively, in multiple
updates.

The appropriate packet DMA engine within DMA engine
224 is notified that the packet is ready. The packet DMA
engine 224 can be selected from available DMA channels, or
if a specific application has a dedicated DMA channel, the
associated packet DMA engine 224 for that channel is used.
The DMA engine 224 retrieves the DMA descriptor from the
send DMA descriptor rings 218. When multiple descriptors
are outstanding in the send DMA descriptor rings 218, the
DMA Engine 224 may retrieve more than one descriptor.
Retrieving multiple descriptors at a time maximizes bus
bandwidth and hardware efficiency. The DMA engine 224 is
capable of receiving and processing send descriptors of vari-
able type, format, and size.

As outlined above, the packet DMA engine 224 monitors
the progress of the host DMA operations via a set of mailbox
registers 230. Each packet DMA engine 224 supports its own
set of mailbox registers 230. The mailbox registers 230 reside
in a mapped address space of the network interface controller
204. When appropriate, the host processor 200 accesses the
mailbox registers 230 by performing memory mapped read
and write transactions to the appropriate target address. The
mailbox registers 230 also contain ring status information for
the Ring to QoS Mapper 228. In this send DMA example, the
packet DMA engine 224 reads the send descriptor, performs
the DMA operation defined by it, and reports to the host
system 111 that the DMA operation is complete. During the
DMA operation, data is received from one or more CPU Bus
read transactions (e.g., HyperTransport or PCI Express read
transactions).

DMA scheduler 226 chooses packets out of packet buffers
216 based upon the priority of the queued network data pack-
ets and schedules the transfer to the appropriate packet DMA
engine 224. For clarity and brevity, only a single packet
buffer, a single DMA scheduler, and DMA engine are shown
in FIG. 2B, but it should be understood that additional packet
buffers, DMA schedulers, and DMA engines supporting the
independent DMA channels 1-n and associated applications
App(1)-App(n) can be included in network interface control-
ler 204.

The packet buffers 216 are sclected based on the novel
scheme (discussed below) using DMA scheduler 226. The
DMA scheduler 226 selects which descriptor ring 1-4 out of
return DMA descriptor rings (also referred to as return DMA
rings, or send rings) within DMA memory resources 212 to
service and the matching packet bufter 216 is accessed for a
single packet. The scheduling process is then repeated for the
next packet.

Each network packet retrieved from a packet buffer 216 is
routed to the appropriate DMA channel controlled by the
respective packet DMA engine such as the packet DMA
engine 224. The DMA channel segments the network packet
for delivery to host memory 212 via several, smaller, Hyper-
Transport packets. These HyperTransport packets are inter-

10

15

20

25

30

35

40

45

50

55

60

65

8

leaved with HyperTransport packets from the other DMA
channels in the network interface controller 204.

Ring to QoS Mapper 228 examines the assigned send
DMA ring in send DMA descriptor rings 218 and receives
packet data and packet control information from the packet
DMA engine 224. Using the control information, the Ring to
QoS Mapper 228 stamps the appropriate QoS onto the net-
work data packet, thereby allowing host system 111 to send
the network data packet back to the network 108. For
example, using the control information, the Ring to QoS
Mapper 228 can create and prepend a HiGig header to the
packet data.

An egress DMA routing interface 232 arbitrates access to
the network for DMA send packets. When a Ring to QoS
Mapper 228 has a network packet ready to send, the egress
DMA routing interface 232 arbitrates its access to the Ether-
net port 236 and routes the packet to the correct interface if
there is more than one present in the network interface con-
troller 204. The egress DMA routing interface 232 behaves
like a crossbar switch and monitors its attached interfaces for
available packets. When a packet becomes available, the
egress DMA routing interface 232 reads the packet from the
selected ring to QoS mapper 228 and writes it to the destina-
tion interface. The egress DMA routing interface 232 moves
complete packets to Ethernet MACs 234. When multiple
sources are contending for egress DMA routing interface 232,
the egress DMA routing interface 232 uses a weighted arbi-
tration scheme as discussed in more detail below.

The network interface controller 204 provides DMA ser-
vices to a host complex such as the host system 111 on behalf
of its attached I/O devices such as the Ethernet port 236.
DMA operations involve the movement of data between the
host memory 212 and the network interface controller 204.
The network interface controller 204 creates and manages
HyperTransport or other types of CPU Bus read/write trans-
actions targeting host memory 22. Data transfer sizes sup-
ported by DMA channels maintained by various components
ofapplication delivery controller 110 are much larger than the
maximum HyperTransport or CPU bus transaction size. The
network interface controller 204 segments single DMA
operations into multiple smaller CPU Bus or HyperTransport
transactions. Additionally, the network interface controller
204 creates additional CPU bus or HyperTransport transac-
tions to support the transfer of data structures between the
network interface controller 204 and host memory 212.

FIG. 2C illustrates further details of the network traffic
management device in accordance with an aspect of the
present disclosure. In particular, the network traffic manage-
ment device 110 is shown handling a plurality of independent
applications App(1)-App(n) being executed by one or more
processors (e.g., host processor 200) in host system 111. Each
application in the plurality of applications App(1)-App(n) has
its own respective application driver shown as Driver 1,
Driver 2, . . ., Driver ‘n’ associated with the respective
application, where the index n denotes an unlimited number
of executing applications and drivers. Applications App(1)-
App(n) send and receive data packets from and to the network
108 (and/or LAN 104), respectively, using respective DMA
channels (e.g., DMA channels 1-n). DMA channels 1-n are
uniquely assigned to individual applications out of App(1)-
App(n). In this example, drivers 1-n manage access to respec-
tive DMA channels 1-n and do not require knowledge of each
other or a common management database or entity (e.g., a
hypervisor). By way of example only, each of applications
App(1)-App(n) can be independent instances of different
applications, or alternatively, may be independent instances

US 9,270,602 B1

9

of'the same application, or further, may be different operating
systems supported by different processors in host system 111
(e.g., host processor 200).

DMA channels 1-n each have unique independent
resources allotted to them, for example, a unique PCI bus
identity including a configuration space and base address
registers, an independent view of host system memory 212, a
unique set of DMA descriptor ring buffers, a unique set of
packet buffers 216, unique DMA request/completion signal-
ing (through interrupts or polled memory structures), and
other resources. Each of DMA channels 1-n is unique and
independent thereby permitting management by separate
unique drivers 1-n.

The network interface controller 204 classifies received
packets to determine destination application selected from
applications App(1)-App(n) and thereby selects the matching
DMA channel to deliver the packet to the corresponding
application. By way of example only, packet classification
includes reading packet header fields thereby permitting
application identification. Further by way of example only,
packet classification includes hash calculation for distribu-
tion of packets across multiple instances of the same appli-
cation, and/or reading a cookie stored, for example, in the
network interface controller 204 associated with the applica-
tion and the received network packet.

In general, the present disclosure utilizes hardware and
software in the network traffic management device when
pacing network traffic being sent to another network device
(e.g. client, server). The purpose is for the network traffic
management device to pace delivery of session data to the
client to match the rate at which the client consumes the data,
which adds value for mobile clients and networks. The net-
work traffic management device utilizes a transmit time cal-
endar having a plurality of quanta of transmit times. For
example, one quanta may be 1 microsecond, although other
time durations are contemplated.

FIG. 3 illustrates an example transmit ring or bucket in
accordance with an aspect of the present disclosure. As shown
in FIG. 3, the bucket 300 is a software based data construct
which holds a plurality of data packet DMA descriptors
which point to the pending transmit packets and has packets
from a plurality of various, different sessions. The bucket 300
has a fence 302 which marks the last descriptor in the bucket.
Software determines what data packets to send and when to
send those data packets. The software communicates with the
hardware component wherein the software enhances the data
structures to communicate a time component with regard to
when the selected data packets are to be sent. In particular, the
software component divides session data into multiple maxi-
mum segment sized (MSS) or smaller sized packets. The
software component distributes the packets in buckets sepa-
rated by fixed transmit times, wherein the buckets are then
handed off to the hardware component, such as a DMA ring,
to handle the delivery of the data packets populated in the
buckets, by processing the buckets themselves.

FIG. 4 illustrates a time line of an example transmit ring or
bucket in accordance with an aspect of the present disclosure.
As can be seen in FIG. 4, the transmit time calendar utilizes a
plurality of buckets 300 where session data 400, such as data
packet DMA descriptors is populated into the buckets 300.
Each bucket has a predetermined size and adjacent buckets
are separate by a transmit time or quanta that is fixed (shown
as T1-T4). It should be noted the time calendar is configured
to have a finite number of buckets, wherein the calendar
effectively wraps around to the first bucket after the last
bucket has been handled. In addition, multiple packet descrip-
tors can be placed in the same bucket to increase bandwidth.

10

15

20

25

30

35

40

45

50

55

60

65

10

The software component may decide whether to pace a data
packet, as opposed to being bulk data (FIG. 5) based on size,
type of traffic the data packet is associated with, QoS param-
eters (based on flow) and the like.

In an aspect, one or more buckets 300 can be skipped for
distribution, by the software component, to increase intra-
packet spacing. One way for determining how many buckets
to skip before placing a data packet descriptor in a bucket 300
can be based on the type or class of application in which the
data is delivered (e.g. video streaming). For example, video
streaming applications would benefit from a constant rate of
data delivery. Another way of determining (based on speed)
would be using TCP congestion control algorithms which
calculate how many packets are to be sent over time. The
software does not have to hunt for holes where packet descrip-
tors can be inserted. Instead, the software component need
only to drop packet descriptors into the one or more buckets
300.

Once a bucket 300 is populated by the software component,
the software component releases the bucket to the hardware
component, such as the network interface 204. In particular,
the bucket contents are written into the network interface’s
204 DMA ring 218 en-mass. In an aspect, the hardware com-
ponent can determine whether the size of a particular data
packet in a bucket is of a threshold size such that the data
packet can be processed within the allotted time quanta.

A gross timer is applied by the hardware component in
writing the packets into the DMA ring 218, wherein the poll
loop time of the processor 200 of the network traffic manage-
ment device 110 is used as the gross timer. The sum of
released bucket time quanta’s must excel poll loop time.

The fence 304 marking at the end of a particular bucket 300
serves as a timing boundary at the end of the bucket to allow
the hardware component to do precise bucket to bucket tim-
ing.

FIG. 5 illustrates a block diagram of hardware based time
enforcement in performed by a high speed bridge (HSB)
priority mechanism in accordance with an aspect of the
present disclosure. As shown in FIG. 5, data packets that are
written to buckets that are released to the hardware are
received in a pacing send ring 500. In contrast, non-paced
data (data not written to buckets) are received in a bulk send
ring 502.

In an aspect, the pacing send ring 500 is given higher
priority in terms of being sent to the ring arbitrator 506. Thus,
the bulk traffic in the bulk send ringer 502 advances to the
arbitrator 506 when the paced traffic (from the pacing send
ring 500) is blocked or is absent. A pacing timer 504 in
coupled to the pacing send ring 500 and the arbitrator 506,
wherein the pacing timer is reset at the start of a new bucket
300. The pacing timer 504 also blocks traffic at bucket bound-
aries until the bucket quanta time expires.

FIG. 6 illustrates an example transmit time line in accor-
dance with an aspect of the present disclosure. As shown in
the time line 600, the hardware component consumes the data
packets in the first bucket 602 for the entire time quanta which
ends at boundary A. In the second bucket 604, it is shown that
the hardware component finishes writing the paced data pack-
ets such that additional time remains for the allotted time. The
hardware component thereafter processes bulk data for the
remaining amount of time in the time quanta until reaching
boundary B. The same occurs in bucket 606. In bucket 608,
there is a period of time where no data is written, which can
result in no bulk data or paced data being available for writing
to the DMA engine.

FIG. 7 illustrates a flow chart of the software implementa-
tion of populating buckets with data packet descriptors in

US 9,270,602 B1

11

accordance with an aspect of the present disclosure. As shown
in FIG. 7, the process 700 occurs when a first bucket of a
plurality of buckets is selected by the application module 210
of the network traffic management device (Block 702). The
application module 210 thereafter populates the first bucket
with one or more data packet descriptors associated with data
packets to be released to the network interface 204 (Block
704). The application module 210 thereafter determines
whether there are additional paced or bulk data packets that
can be added to the current selected bucket (Block 706). If so,
the process repeats back to Block 704. If not, the process
proceeds to Block 708.

Once the application module 210 has populated the bucket
with the last data packet, the application module 210 applies
a fence which represents the last data packet for that bucket
(Block 708). The application module 210 thereafter deter-
mines if the selected bucket is the last bucket in the time
calendar (Block 710). If so, the application module 210 effec-
tively wraps around the time calendar and selects the first
bucket (Block 702). If not, the application module 210 selects
the next bucket in the time calendar (Block 712), wherein the
process proceeds back to Block 704.

FIG. 8 illustrates a flow chart of the software implementa-
tion of populating buckets with data packet descriptors in
accordance with an aspect of the present disclosure. As shown
in FIG. 8, the process 800 occurs when a first bucket of a
plurality of buckets is selected by the network interface 204 of
the network traffic management device (Block 802). The
network interface 204 thereafter processes paced data packet
(s) for the selected bucket (Block 804). The network interface
204 thereafter determines whether additional time is available
for the selected bucket (Block 806). If so, the network inter-
face 204 determines if bulk data packets are present in the
bucket (Block 808). If so, the network interface 204 processes
the bulk data for the bucket (Block 810). The process then
repeats back to Block 806.

If no additional allotted time is left, the network interface
204 selects the next bucket 812 and the process proceeds back
to Block 804. Referring back to Block 808, if no bulk data is
available for processing for a particular bucket, the network
interface 204 does not write any data packets and allows the
remaining time for the bucket quanta to expire (Block 814).
The process then proceeds to Block 812.

Having thus described the basic concepts, it will be rather
apparent to those skilled in the art that the foregoing detailed
disclosure is intended to be presented by way of example
only, and is not limiting. Various alterations, improvements,
and modifications will occur and are intended to those skilled
in the art, though not expressly stated herein. These alter-
ations, improvements, and modifications are intended to be
suggested hereby, and are within the spirit and scope of the
examples. Additionally, the recited order of processing ele-
ments or sequences, or the use of numbers, letters, or other
designations therefore, is not intended to limit the claimed
system and/or processes to any order except as may be speci-
fied in the claims. Accordingly, the system and method is
limited only by the following claims and equivalents thereto.

What is claimed is:
1. A method for transmitting data packets at an optimized
rate, the method comprising:

populating, by the network traffic management computing
device, a plurality of buckets with one or more selected
data packet descriptors associated with one or more
corresponding ones of a subset of a plurality of data
packets to be transmitted as paced and another subset of
the data packets to be transmitted as bulk;

20

25

40

45

60

65

12

releasing, by the network traffic management computing
device, one of the buckets to a hardware component
comprising a pacing send ring and a bulk send ring, the
releasing comprising writing one or more of the subset
of the data packets to the pacing send ring and one or
more of the another subset of the data packets to the bulk
send ring; and
transmitting, by the network traffic management comput-
ing device, the one or more of the subset of the data
packets from the pacing send ring and the one or more of
the another subset of the data packets from the bulk send
ring for a predetermined transmit time, wherein the sub-
set of the data packets are strictly prioritized over the
another subset of the data packets and the one or more of
the another subset of the data packets are only transmit-
ted within the predetermined transmit time when the
pacing send ring is emptied during the predetermined
transmit time.
2. The method as set forth in claim 1, further comprising
repeating, by the network traffic management computing
device, the releasing and transmitting for each other of the
buckets.
3. The method as set forth in claim 1, wherein the one or
more of the subset of the data packets from the pacing send
ring and the one or more of the another subset of the data
packets from the bulk send ring are transmitted by a direct
memory access (DMA) transmit engine.
4. The method as set forth in claim 1, wherein the subset of
the data packets to be transmitted is identified as paced and
the another subset of the data packets is identified as bulk
based on a data packet size, an associated type of traffic, or a
quality of service (QoS) parameter.
5. The method as set forth in claim 1, further comprising:
determining, by the network traffic management comput-
ing device, when another one of the buckets should be
skipped based on a type of application from which the
ones of the data packets associated with the selected data
packet descriptors populated therein originated; and

skipping, by the network traffic management computing
device, the another one of the buckets such that the
releasing and transmitting are not repeated for the
another one of the buckets, when the determining indi-
cates that the another one of the buckets should be
skipped.

6. The method as set forth in claim 1, further comprising
waiting, by the network traffic management computing
device, to release another one of the buckets when the one or
more of the subset of the data packets are transmitted from the
pacing send ring and the one or more of the another subset of
the data packets are transmitted from the bulk send ring prior
to the expiration of the predetermined transmit time.

7. A non-transitory computer readable medium having
stored thereon instructions for transmitting data packets at an
optimized rate, comprising executable code which when
executed by at least one processor and/or network interface
causes the processor and/or network interface to perform
steps comprising:

populating a plurality of buckets with one or more selected

data packet descriptors associated with one or more
corresponding ones of a subset of a plurality of data
packets to be transmitted as paced and another subset of
the data packets to be transmitted as bulk;

releasing one of the buckets to a hardware component

comprising a pacing send ring and a bulk send ring, the
releasing comprising writing one or more of the subset

US 9,270,602 B1

13

of the data packets to the pacing send ring and one or
more of the another subset of the data packets to the bulk
send ring; and
transmitting the one or more of the subset of the data
packets from the pacing send ring and the one or more of
the another subset of the data packets from the bulk send
ring for a predetermined transmit time, wherein the sub-
set of the data packets are strictly prioritized over the
another subset of the data packets and the one or more of
the another subset of the data packets are only transmit-
ted within the predetermined transmit time when the
pacing send ring is emptied during the predetermined
transmit time.
8. The non-transitory computer readable medium as set
forth in claim 7, wherein the executable code when executed
by the processor and/or the network interface further causes
the processor and/or the network interface to perform at least
one additional step comprising repeating the releasing and
transmitting for each other of the buckets.
9. The non-transitory computer readable medium as set
forth in claim 7, wherein the one or more of the subset of the
data packets from the pacing send ring and the one or more of
the another subset of the data packets from the bulk send ring
are transmitted by a direct memory access (DMA) transmit
engine.
10. The non-transitory computer readable medium as set
forth in claim 7, wherein the subset of the data packets to be
transmitted is identified as paced and the another subset of the
data packets is identified as bulk based on a data packet size,
an associated type of traffic, or a quality of service (QoS)
parameter.
11. The non-transitory computer readable medium as set
forth in claim 7, wherein the executable code when executed
by the processor and/or the network interface further causes
the processor and/or the network interface to perform at least
one additional step comprising:
determining when another one of the buckets should be
skipped based on a type of application from which the
ones of the data packets associated with the selected data
packet descriptors populated therein originated; and

skipping the another one of the buckets such that the releas-
ing and transmitting are not repeated for the another one
of the buckets, when the determining indicates that the
another one of the buckets should be skipped.

12. The non-transitory computer readable medium as set
forth in claim 7, wherein the executable code when executed
by the processor and/or the network interface further causes
the processor and/or the network interface to perform at least
one additional step comprising waiting to release another one
of the buckets when the one or more of the subset of the data
packets are transmitted from the pacing send ring and the one
or more of the another subset of the data packets are trans-
mitted from the bulk send ring prior to the expiration of the
predetermined transmit time.

13. A network traffic management computing device com-
prising at least one processor and/or network interface and a
memory coupled to the processor and/or network interface
which is configured to be capable of executing programmed
instructions comprising and stored in the memory to:

populate a plurality of buckets with one or more selected

data packet descriptors associated with one or more

10

15

20

25

30

35

40

45

50

55

60

14

corresponding ones of a subset of a plurality of data
packets to be transmitted as paced and another subset of
the data packets to be transmitted as bulk;
release one of the buckets to a hardware component com-
prising a pacing send ring and a bulk send ring, the
releasing comprising writing one or more of the subset
of the data packets to the pacing send ring and one or
more of the another subset of the data packets to the bulk
send ring; and
transmit the one or more of the subset of the data packets
from the pacing send ring and the one or more of the
another subset of the data packets from the bulk send
ring for a predetermined transmit time, wherein the sub-
set of the data packets are strictly prioritized over the
another subset of the data packets and the one or more of
the another subset of the data packets are only transmit-
ted within the predetermined transmit time when the
pacing send ring is emptied during the predetermined
transmit time.
14. The network traffic management computing device as
set forth in claim 13, wherein the processor and/or network
interface coupled to the memory is further configured to be
capable of executing at least one additional programmed
instruction comprising and stored in the memory to repeat the
releasing and transmitting for each other of the buckets.
15. The network traffic management computing device as
set forth in claim 13, wherein the one or more of the subset of
the data packets from the pacing send ring and the one or more
of the another subset of the data packets from the bulk send
ring are transmitted by a direct memory access (DMA) trans-
mit engine.
16. The network traffic management computing device as
set forth in claim 13, wherein the subset of the data packets to
be transmitted is identified as paced and the another subset of
the data packets is identified as bulk based on a data packet
size, an associated type of traffic, or a quality of service (QoS)
parameter.
17. The network traffic management computing device as
set forth in claim 13, wherein the processor and/or network
interface coupled to the memory is further configured to be
capable of executing at least one additional programmed
instruction comprising and stored in the memory to:
determine when another one of the buckets should be
skipped based on a type of application from which the
ones of the data packets associated with the selected data
packet descriptors populated therein originated; and

skip the another one of the buckets such that the releasing
and transmitting are not repeated for the another one of
the buckets, when the determining indicates that the
another one of the buckets should be skipped.

18. The network traffic management computing device as
set forth in claim 13, wherein the processor and/or network
interface coupled to the memory is further configured to be
capable of executing at least one additional programmed
instruction comprising and stored in the memory to wait to
release another one of the buckets when the one or more of the
subset of the data packets are transmitted from the pacing
send ring and the one or more of the another subset of the data
packets are transmitted from the bulk send ring prior to the
expiration of the predetermined transmit time.

#* #* #* #* #*

